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Introduction

Federated machine learning (FedML) is a promising approach that enables

multiple participants to collaboratively train a shared model without re-

quiring them to share their data. FedML, being decentralized in nature, is

vulnerable to various security threats.
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Figure 1. Poisoning Attack in FedML

Poisoning Attack

Poison attacks are a serious security

threat that can lead to unreliable results.

Broadly categorized as either:

Data Poisoning Attacks based on fake

data injection.

Model Poisoning Attacks based on

fake update injection.

Goal: undermine model’s performance.

Challenges

Filtering poisoned model updates from genuine updated.

Ensuring privacy is not violated during the filtration process.

Proposed Solution

Using Generative Adversarial Networks (GANs) in

conjunction with last model state to robustly differ-

entiate poisoned updates from benign updates.
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Figure 2. Using GANs to filter poisoning attacks in FedML
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