Using Generative Adversarial Networks to Detect Model

Poisoning Attacks in Federated Machine Learning
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Figure 1. Poisoning Attack in FedML
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Goal: undermine model's performance.

Proposed Solution

. Filtering poisoned model updates from genuine updated.
. Ensuring privacy is not violated during the filtration process.
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Figure 2. Using GANSs to filter poisoning attacks in FedML
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